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Turbulent convection over a heated horizontal surface 

By D. B. THOMAS and A. A. TOWNSEND 
Cavendish Laboratory, Cambridge 

(Receiered 11 March 1957) 

SUMMARY 
Detailed measurements have been made of the temperature 

field in natural convection above a heated horizontal surface in 
air, with and without a cold upper boundary. The object was to 
provide experimental material for the testing of existing theories of 
convection and the development of new ones. Using a variety of 
experimental techniques, it was possible to measure the heat 
transfer, the mean temperature profiles, mean squares of the 
temperature fluctuations and the autocorrelation functions of the 
temperature fluctuations. These results are considered in 
relation with the ' similarity ' theory of Priestley and the ' neutral 
stability' theory of Malkus. Both these theories lead to the 
conclusion that, for convection between parallel planes at high 
Rayleigh numbers, nearly the whole of the mean temperature 
variation occurs in comparatively thin surface layers whose 
mutual interaction is small. The present experiments confirm 
this in some detail, but the exact form of the variation of mean 
temperature cannot be completely reconciled with either of the 
theories. 

1. INTRODUCTION 
The motion set up in a fluid which is enclosed by two plane horizontal 

boundaries and heated from below forms a very suitable subject for both 
theoretical and experimental study of heat convection, the boundary 
conditions being homogeneous in the horizontal directions. As the 
difference of temperature between the surfaces increases from zero, an 
ordered, cellular motion usually appears at a Rayleigh number about the 
predicted value of 1708, but this regular motion disappears and is replaced 
by a random ' turbulent ' motion at some Rayleigh number around 50,000 
(Jakob 1949; de Graaf & van der Held 1953). More recent work by 
Malkus (1954a) has shown that there may be as many as five transitions 
between one flow regime and another before fully turbulent convection is 
established for Rayleigh numbers exceeding one million. 

Apart from some observations of the motion of suspended particles 
(Malkus 1954 a), there have been few attempts to study any other aspects 
of the problem than the dependence of heat transfer coefficient on Rayleigh 
number, and the experimental work to be described was undertaken in the 
hope of providing more detailed information about conditions within the 
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fluid. Working with air, it has been possible to measure mean temperatures 
and temperature fluctuations at points between the surfaces and so to make 
a more stringent test of the several theoretical predictions than would be 
possible with heat transfer measurements alone. Similar measurements 
have been made in the convection field above a single heated plate. This 
last arrangement is an approximation to the convection over an infinite 
horizontal surface and may be compared with the predictions of the 
similarity theory (Priestley 1954). I t  may also resemble the convection 
near the lower of two parallel planes at very high Rayleigh numbers. 

2. THE EQUATIONS OF MOTION AND OF HEAT 

Let us consider the convection in a perfect gas in the space above a 
rigid horizontal surface whose temperature is everywhere TI ,  measured in 
the absolute gas scale. The coordinate system is chosen so that the origin 
is in the plane of the surface and Ox is vertically upwards. Sometimes the 
fluid is bounded above by a similar horizontal surface in the plane 2: = D, 
and with temperature T2. If there is no such upper boundary, the tempera- 
ture at a great distance from the surface is T,. Then 

are the velocity components parallel to Ox, 

are the mean pressure and the fluctuation 
about the mean, 
are the mean temperature and the fluctuation 
about the mean, 
is the ratio of the specific heats, 

u, v, w 

p ,  P 

T, 9 

Y 
V is the kinematic viscosity, 
K is the thermometric conductivity, 
H 

oy ,  ox, 42 = u2 + 212 + w2, 

is the constant upward flux of total heat, 

is the Rayleigh number (this definition is 
consistent with use of the logarithm of the 
absolute temperature and, for numerical 
purposes, is nearly identical with the ordinary 
definition). 

For motions on the laboratory scale, and with fluid velocities small 
compared with the velocity of sound, the constant flux of total heat is given by 

Q = H/(pc,, 7') = (y - l ) H / y P  is a ' kinematic ' measure of the heat flux, 

A = gD310g(T,/T2)/v~ 

where the single bar denotes the mean value with respect to time. 
may be written as 

This 

where Q is also a constant. 
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To the customary approximation, the equation for the turbulent energy 
Der unit mass is 

where E is the rate of dissipation of energy by viscous stresses. The terms 
on the left represent transport of energy from one part of the flow to another, 
the terms on the right represent generation of energy by buoyancy forces 
and the viscous dissipation. 

Another mean value equation of some interest is the equation for - the 
entropy associated with the temperature fluctuations, which is - Ac, lP IT2. 
To this approximation it is \ 

showing that entropy (or temperature fluctuations) is produced at a rate 
proportional to  the mean temperature gradient. 

It may be noticed that all three mean value equations (2.2 to 2.4) involve 
temperature variations only as fractions of the local mean temperature, 
which suggests that they would be more naturally expressed in terms of the 
logarithm of the temperature rather than the temperature. The distinction 
is of no importance if the total temperature variation is negligible compared 
with the absolute temperature, but this is far from true in most of the experi- 
ments to be described. In the following analysis of the experimental 
results, the logarithm of the temperature has been used consistently with 
a considerable improvement in the correlation with theoretical predictions. 

3. THEORIES OF THE CONVECTION 

A first step in the study of any problem of fluid motion is to use 
dimensional analysis to obtain the forms of the functional relations between 
the observables. For any convection between parallel, horizontal surfaces, 
the boundary conditions are geometrically similar and may be specified by 
the separation of the surfaces and the difference of the logarithms of the 
temperatures. If the equations of motion, heat, and conservation of mass, 
are put into non-dimensional form by use of scales of length, temperature 
and velocity derived from D, log(T,/T2) and the quantities g, v, K ,  it is 
immediately evident that the convection depends only on the Rayleigh 
number and the Prandtl number, V / K .  For example, the heat transfer 
coefficient is 

and the distribution of mean temperature is 

For very large separations of the surfaces (high Rayleigh numbers), 
it seems possible that the convection close to each surface may be nearly 
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independent of the presence of the other surface and so of D. T h e  basic 
equations may still be made non-dimensional, and conveniently so by using 
the following scales of length, velocity and (logarithmic) temperature, 

Xo = (&>’i”, uo = (Qg/c)1/4, 8, = (5)l’” 
and their solution depends only on the Prandtl number. It follows that 

that 

and that 

T 

6 2  
- 

(3.3) 

where C is a function of Prandtl number, and T, is the asymptotic 
temperature far from the lower surface but not so far as to be within the range 
of influence of the upper surface. If this temperature exists, equation 
(3.3) defines the variation of heat transfer coefficient with Rayleigh number 
as 

for Rayleigh numbers so high that the temperature gradient is negligible 
except close to the surfaces. The  proportionality between heat transfer 
coefficient and cube root of Rayleigh number is well confirmed by experi- 
ment for Rayleigh numbers above lo6 (e.g. Malkus 1954 a), and this provides 
strong support for the concept of surface convection layers within which 
most of the temperature variation occurs. 

The  concept of a surface layer with a structure determined by the heat 
flux through it is very similar to the concept of a constant stress layer in 
turbulent flow near a wall, and this suggests that there may be a part of the 
surface layer within which the direct effects of conductivity and viscosity 
are negligible. If there is such a region, within it we have 

T 
(3.7) log - = B, QWg-113x113 

T a  

and 

where the constants may depend on Prandtl number. The  prediction 
(3.7) is supported by measurements of heat transfer in the lower atmosphere 
(Priestley 1954). 

The only complete theory of the convection between parallel planes is 
that proposed by Malkus (1954 b) and suggested to him by his observations 
of successive transitions between the initial cellular convective flow and the 
final state of completely disordered turbulent motion. Malkus suggests 
that the flow adjusts itself to transfer the maximum amount of heat 
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compatible with the boundary conditions and subject to the additional 
restrictions, 

(u)  that the heat flux is everywhere down the gradient of mean 
temperature, 

(b)  that the variations of temperature and vertical velocity may be 
represented by Fourier series which terminate after a finite number of 
terms. (The number of terms in the two Fourier series is determined by 
requiring that the distribution of mean temperature, which is defined by 
these conditions, should be neutrally stable with respect to perturbations 
of the smallest wavelength occurring in the Fouricr series.) 

Unlike most current theories of turbulent motion, this theory is based 
on generalizations more like to those of thermodynamics than those of 
fluid mechanics, but it has the considerable virtue of making definite 
numerical predictions. For our purpose the most relevant are (i) that, 
not too close to the bounding surfaces, 

- 
1 dT 
T d z  
------ 

or, more usefully, 

log TIT, = - - 

(3.9) 

(3.10) 

where T: = TIT2, and (ii) that the mean square of the temperature 
fluctuations, averaged over the whole space, is 

(3.11) 

where the double bar signifies a double average, first over time at a point and 
then over all values of z in the field. It should be remarked that the Malkus 
theory is consistent with the assumption of independent surface layers at 
high Rayleigh numbers but not with the additional assumption that the 
direct effects of viscosity and conductivity are negligible. By using 
published measurements of the heat transfer coefficient, which may be 
represented by equation (6.2), equation (3.10) may be written as 

(3.12) 

valid for values of z/zo within the surface layer which are not too small. 
This  is of the same functional form as equation (3.4). 

4. EXPERIMENTAL ARRANGEMENTS 

The  source of heat in these experiments was an electrically heated 
rectangular duraluminium plate of dimensions 30 cm x 40 cm x 1 cm, 
I n  order to secure a uniform distribution of surface temperature and to 
allow direct measurements of heat transfer, this plate formed the upper side 
of a duraluminium-asbestos-duraluminium sandwich (figure l), the lower 
plate being heated by a grid of resistance wire wound on an asbestos former 
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and placed against its lower side. Four copper-constantan thermocouples 
were inserted in each duraluminium plate, and from the mean temperature 
difference and the measured thermal conductivity of the asbestos thermal 
resistance the total heat loss from the top plate could be calculated. From 
this was subtracted the heat loss by radiation and by conduction along the 
pillars supporting the upper surface. The radiation correction was 
computed using the emissivity 0.24 appropriate to polished aluminium, 
and was found to form about 30% of the total heat loss. In the parallel plate 
experiments, the upper boundary was a similar aluminium plate forming 
part of a water jacket. The temperature of this plate could also be measured 
by thermocouples set in it. Both plates were ground flat after assembly 
and were kept at known distances apart by glass pillars ground to size. 
Vertical walls of rubber or asbestos were always fitted to prevent entry of 
air from the edges of the space. For the measurements over a single heated 
surface, vertical side walls, 60 cm high, were provided for the same purpose, 

D. B. Thomas and A. A. Townsend 

A A L  

Figure 1. Experimental arrangement : diagrammatic section. 

Temperature measurements in the air space were made using resistance 
thermometers of Wollaston wire, 0.00025 cm in diameter of measured 
temperature coefficient 0-00353 deg-1, along which were passed measuring 
currents of about one milliampere. The length of the sensitive, etched 
portion of the wires was usually about 3 mm, giving a resistance of about 
30 ohms. The response time of such a wire is of order one millisecond. 
The wires were soldered between two 30 s.w.g. copper wires stretched 
horizontally between supports on a movable carriage spanning the whole 
apparatus. This carriage could be moved either vertically or horizontally 
by micrometer screws. 

The resistance of the Wollaston wires was measured with a Wheatstone 
bridge supplied with alternating current of 1000 C.P.S. The out-of-balance 
signal of the bridge was amplified and supplied to a phase-sensitive detector. 
The current output from such a detector is a linear function of the wire 
resistance and, passed through a reflecting galvanometer of period about 
one second, gave deflections of a light beam that could be recorded by a drum 
camera (see figure 2, plate 1 and figure 9, plate 2 for some sample records). 
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The whole system was calibrated by substituting known resistances for the 
thermometer element. From these records, the mean temperature was 
determined using a planimeter to measure the area under the trace, and 
the variance by measuring the deviation at intervals along the record. 
The duration of each record was about eight minutes. 

0 8 i I I 

COTflZD 
-4 -8 

Figure 3. Distribution of mean temperature between parallel plates 
(D = 2.92 cm, TI = 52.4" C, T2 = 12.3" C,  A = 0.85 x lo6). 

In  general, the supports of the wire were not at the same height as the 
wire itself and so were not at the same temperature. An appreciable amount 
of heat may be conducted along the supports and lead to a systematic error 
in mean temperature. A correction for this was calculated and applied to 
the measured values. 

Some measurements of the autocorrelation function of the temperature 
fluctuations were also made. For this, the rectified and smoothed output 
from the Wheatstone bridge was used to modulate the frequency of an 
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oscillator, and the oscillations recorded on magnetic tape. This record 
could be played back and the autocorrelation function determined by 
comparing frequencies at points on the tape separated by a known fixed 
distance, that is, the frequencies recorded at moments separated in time by 
the time necessary for the tape to travel the fixed distance. The actual 
comparison consists of the observation of the rate of coincidences between 
standard duration pulses constructed from each set of played-back oscillations, 
the rate being proportional to the product of the instantaneous pulse 
frequencies (Thomas 1956). 

I I I I 
4 0 -4 -8 

COTflZ/D 

Figure 4. Distribution of mean temperature between parallel plates 
(D = 4.88 cm, TI = 46.8" C, Tz = 10.6" C, A = 3.77 x lo5). 

5. THE CONVECTION BETWEEN PARALLEL HORIZONTAL PLANES 

Three sets of measurements were made with very nearly the same 
temperature difference between the plates and three different spacings. 
Table 1 summarizes the experimental conditions and the measured heat 



D. B. Thomas and A. A. Townsend, Turbulent convection over 
a heated horizontal surface, Plate I. 

Figure 2. Temperature fluctuation records between parallel horizontal plates 
(D = 5.87 cm, TI = 46.5" C, T2 = 9.7" C). 



D. B. Thomas and A. A. Townsend, Turbulent convection over 
a heated horizontal surface, Plate 2. 

Figure 9. Temperature fluctuation records over a heated horizontal plate 
(TI = 31.6" C, T B  = 21.6" C).  
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fluxes. It will be noticed that the measured coefficients of heat transfer 
are rather less than those found by Malkus (1954 a) who used water and 
acetone, but that the difference seems to decrease with increasing Rayleigh 
number. 

The measurements of mean temperature are shown in figures 3 to 5. 
It will be noticed that the profile at the highest Rayleigh number is markedly 
asymmetrical and even contains a section with reversed temperature gradient. 

I I I 

4 
I 

0 -4 -8 
COT n Z / D  

Figure 5. Distribution of mean temperature between parallel plates 
(D == 5.87 a, TI = 46.5" C, TS == 9.7" C, A = 6.75 x 10'). 

It  is believed that this is due to the onset of a circulatory motion of dimensions 
similar to those of the whole apparatus, with air rising from the centre of the 
lower plate where the measurements were taken. This motion would cause 
a finite mean shearing stress at the boundaries and logarithmic distributions 
of mean velocity and temperature may be expected. If the mean temperature 
is plotted against the logarithms of the distances from the upper and lower 
surfaces (figure 6),  substantial regions of logarithmic variation are found. 

F.M, 2 K  
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If the other two profiles are plotted in like manner, there is no sign of a linear 
section on the curves. The onset of this circulation at a Rayleigh number 
around 5*105 is probably due to the side walls forcing the large eddies of the 
convection to remain relatively fixed in position. It is probable that-, 

T "C I 

I I I 1  1 I I I I I l l  I , 

I 
D - 2  

Figure 6. Logarithmic temperature profiles (A = 6.75 x 103. 

for greater ratios of plate width to separation, these eddies could wander 
freely and then measurements at a fixed point would be identical with 
spatial means-which clearly they are not, for this particular profile. 

For comparison with the Malkus theory, the three profiles have been 
plotted against cot(m/D) and straight lines fitted to the central portion 

2 K Z  
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0.85 x 1 0 5  
3.77 
6.75 

(figure 3 to 5). At the lower Rayleigh number there is a substantial linear 
region but the slope is less than the predicted value. The slope of the 
second profile agrees more closely with the prediction, but substantial 
departures from linearity exist. As shown by this method of plotting, these 
departures are similar in kind to the gross distortion in the third profile 
and may be caused by a weak circulation of large scale. 

16.1 
30.9 
38.5 

Rayleigh Number 1 2nQD I (Measured slope)-' 
K MTI/TL!) 

12.4 
35 
30 

Table 2. Comparison of equation (3.10) with experiment. 

2 

0 

Figure 7. Temperature fluctuation intensities between parallel plates 
( A  = 6.75~10'). 

Measurements of the root-mean-squares of the temperature fluctuations 
for the highest Rayleigh number are shown in figure 7. The average level 
is 1.9" C, compared with the value of 4.9" C given by equation (3.11). 
This discrepancy is probably too large to be explained by the finite time of 
response of the recording equipment. As would be expected from the shape 
of the mean temperature profile, the intensity of the temperature fluctuations 
reaches a peak just outside the conduction layer, 
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Figure 8 shows the autocorrelation function of the temperature fluctua- 
tions, defined as 

at three values of x. 
decreases sharply as the lower surface is approached. 

~ ( 7 )  = e(t)e(t  + 7) /F  (5.1) 
It will be noticed that the time scale of the fluctuations 

I 

5 7.5 7' 2.5 SEC. 

Figure 8. Autocorrelation functions of the temperature fluctuations 
( D  = 5.87 cm, TI- T,  = 38.8" C). 

6. THE CONVECTION OVER A SINGLE HORIZONTAL PLANE 

Before discussing these measurements, it is necessary to consider the 
relation of the experimental arrangement-a horizontal heated plane forming 
the bottom of an open box of roughly cubical form-to the infinite heated 
plane considered in the theory. Unless there is appreciable large-scale 
circulation, and subsidiary experiments showed that there were not, the 
conditions near the surface will approximate to those near an infinite plane 
if the distance from the surface is small compared with distance from the 
walls and distance from the top of the box. With the single exception of the 
autocorrelation measurements, no measurements were made more than three 
centimetres from the surface and the condition is satisfied. 

Measured quantities - 
TI T~ ~ ~ 1 0 - 4  ~ ~ 1 0 - 4  T, 

31.6"C 21-6"C 0.535 0.503 21.6"C 
52.1"C 23.6"C 1-71 1-79 24.4"C 
72.1"C 22.1"C 3.38 3.09 28.5"C 

Derived quantities 

log TJT, Q x 1 0 2  eo x 1 0 2  zo 

0.0434 1.48 1.12 0.158 
0.0917 4.99 2.80 0.116 
0.1565 9.20 4-44 0.100 

Table 3. Convection over a horizontal plane (c.g.s. units). 

The boundary conditions of the theoretical flow are defined by the 
temperature of the plane and the temperature at infinity, the 'ambient 
temperature ', which corresponds with the temperature at the base of the 
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n 

convection plume that rises from the top of the box and carries away the heat 
convected from the plane. Unfortunately, measurements of this base 
temperature, which may differ from room temperature by as much as 
8" C, were not made at the time of the experiments, and it is necessary to 
estimate it by extrapolation of the measured temperature profiles. In 
figure 10, the three measured temperature profiles are plotted non- 
dimensionally as Ogl log( T/T,) ws x/zo, using the room temperature as 
reference temperature. I t  is clear that vertical displacement of the curves, 
corresponding to changes in the effective ambient temperature, will bring 

I T f 

0 0  0 ,  I 

T-TR 50°C 

-k r-T, 2 8 9 C  

0 T-TR 10°C 

0 + I I , v 

-0 10 2 0  30 Z l Z ,  

Figure 10. Distribution of mean temperature over a heated horizontal plate 
(similarity plot referred to room temperature). 

them into near coincidence. The results plotted in figure 11 have been 
adjusted in this way, using the smallest possible positive differences of 
ambient temperature from room temperature, that is, zero for the first 
profile for which T l -  TR = 10.0" C .  The necessary adjustment increases 
rapidly with plate temperature, probably because air currents in the room 
are more effective in ventilating the top of the box when the convection 
plume is weak. 

The universal non-dimensional profile so obtained may be represented 
within experimental error by 

8, log( T /  T,) = ~*O(X/Z,)-~ (6.1) 
for all values of z/zo greater than two (see figures 11 and 12). It is not 
possible to represent the profile by a ~ l ' ~ - l a w  over a substantial range of 
z/xo without assuming ambient temperatures much . less than room 
temperature and an upper limit to its validity at z/xo = 12. This upper 
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limit would imply that the influence of the distant boundaries becomes 
dominant at only 1 cm from the plate, which seems highly unlikely, and 
that the effective ambient temperature is less than room temperature, 
which is equally unlikely. 

0 10 z/zo 20 

Figure 11. Distribution of mean temperature over a heated horizontal plate (similarity 
plot referred to a selected ambient temperature). The full line follows 
equation (6.1). 

2 2 

+ 

0 

I 

+ 
6 

+o 

P . .+a+o 
I I I I 

0 2  04 w 0 8  o!, 0.2 ' 04 w 0 0  
/ 

(z/J-"' lZl2.J' 

Figure 12. Mean temperatures plotted against (z/z)-l and (z/z)-1/3 
for z/zo > 2. 
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Direct measurements of heat transfer are shown by plotting first 
O;llog( Tl/TR) and O;llog(T,/Ta) against log( Tl/T,) (figure 13). In the 
second graph, appropriate values of T,- TR have been obtained by inter- 
polating between the values used in figure 11. If the convection is really 
independent of the side walls and the distant boundaries, O;l log( Tl/T,) 
should be independent of temperature difference, as is implied by equation 
(3.3). With these values for the ambient temperature, these measurements 
indicate that 

nearly independent of 
be compared with the 

temperature difference. The coefficient 3.4 may 
value 3.1 obtained from the temperature profiles. 

30' I I 

0 ''I loql;/TR 0.2 

Figure 13. Measurements of heat transfer from a heated horizontal plate (plotted 
non-dimensionally). 

It is also interesting to compare these values of heat transfer with measure- 
ments between paraIlel planes at large Rayleigh numbers. The 
measurements of Malkus (1954 a) and others are closely represented by 

HD 113 

k(Tl -  T,) = (A) 
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If the heat transfer at each surface were little affected by the presence of 
the other surface, we would expect the ratio 

to be a constant and the temperature midway between the surfaces to be 
the geometric mean of the surface temperatures. From equation (6.3) 
and inserting the value of the Prandtl number v / K  for air, we find 

( T ,  = ( Tl T2)1/2), in good agreement with the previous values". Even 
the measurements of heat transfer of the previous section give values of 
4.0, 3.7 and 3.6 at Rayleigh numbers of 0.85 x lo5, 3.77 x lo5 and 6.75 x lo5, 
although these are too low for independence of the two surface layers. 

""I + 

Figure 14. Temperature fluctuation intensities over a heated horizontal plate. 

Measurements of root-mean-square temperature fluctuation, plotted 
non-dimensionally as [p]1/2/[ T(Q3/~g)l/~] against ( g Q / ~ ~ ) l / ~ z ,  are shown in 
figure 13. The  measurements for the two heat transfers only agree at the 
larger values of ( g Q / ~ ~ ) l ' ~ z .  It is very probable that the response time of 
the galvanometer prevented the complete recording of the rapid fluctuations 
occurring near the surface. The  single measurement of the autocorrelation 
function (figure 14) shows that a substantial part of the intensity resides in 

"These non-dimensional equations refer to air with V / K  = 0.77. Accepting 
equation (6.3) as correct, the general form of equation (6.4) is 

TI Qa l/4 

log- T a  = 3.34 (z) (f)'". 
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Fourier components of periods less than the period of the galvanometer, 
one second. It may be mentioned that more recent work using equipment 
with faster response has registered temperature fluctuations of much 
greater amplitude. 
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Figure 15.  Autocorrelation function of the temperature fluctuations over a horizontal 
plate (TI-- TR = 70.9" C, z = 4 cm). 

7. DISCUSSION OF RESULTS 

The most interesting feature of these measurements is the close 
correlation between heat transfer from a single surface and heat transfer 
between parallel planes. Even though the Rayleigh numbers of the parallel 
plane experiments were comparatively small, they tend to confirm the 
experimental finding of Malkus that, at high Rayleigh numbers, the heat 
transfer coefficient is nearly proportional to the cube root of the Rayleigh 
number and so is independent of the separation of the surfaces. This 
must mean that the conditions near each surface dictate the heat transfer 
and that the central region is a region of negligible temperature gradient, 
easily capable of transmitting the imposed heat flux. Nearly all the 
temperature drop occurs in the wall layers which have a temperature 
distribution determined by the heat transfer, the conductivity (and viscosity) 
and the gravitational field. Additional confirmation of this view is found 
in the observation of Malkus (1954 a) that the heat transfer between parallel 
planes is practically unaffected by the presence of vertical partitions even 
though they restrict greatly the motion of the central region. 

Although both the existing theories of convection conform to this 
general pattern, neither is capable of describing accurately the measured 
profiles. The similarity theory (Priestley 1954) requires that log( T/T,) 
should be proportional to z-1'3 for all large values of z/zo, where T,, the 
temperature at large distances from the surface, is certainly not less than room 
temperature. I t  is impossible to fit any substantial part of the observations 
by such a power law without using a value of T,  less than room temperature. 
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The very interesting theory of Malkus (1954 b) is more successful in as 
much as its prediction that 

T XO log- = C8,- 
T a  X 

fits the observations well if C = 3.0. However, consistency of the heat 
transfer measurements and the theory requires that C = 2.0 (see equation 

The failure of the similarity theory to describe the temperature variation 
within the range of measurement implies that the local temperature gradients 
and other local characteristics of the convection are affected either by the 
conductivity (or viscosity) of the fluid or by the convection near the distant 
boundary. This may appear surprising in view of the considerable success 
of the similarity treatment of flow in the constant stress region of turbulent 
wall flow, for which similar assumptions of independence of viscosity and 
presence of distant boundaries are made. The analogy fails in that the 
constant stress layer is a layer of substantially uniform turbulent intensity 
in which no appreciable net transport of turbulent energy is expected, while 
the surface layer, as described by the similarity theory, would have a turbulent 
intensity varying as ( and substantial transport of turbulent energy 
towards the surface would be expected. Also, the intensity of the tem- 
perature fluctuations varies considerably and they will be transported through 
the surface layer. These considerations (and the present results) suggest 
that interaction between different parts of the surface layer may be more 
effective than the similarity theory supposes. It is possible that the 
conditions assumed may exist for values of X/X, beyond the range of measure- 
ment, where the difference from ambient temperature is very small compared 
with the temperature difference across the whole layer. If the 
meteorological evidence is accepted, it presumably means that these 
measurements were made in such a region. 

The defects in the Malkus theory are difficult to diagnose, partly because 
the theory is based on general statements not easily related to the more 
common approach through the equations of motion and heat. The difference 
between the theoretical and observed distributions of temperature in the 
surface layer indicates that the convection has not attained the optimum 
condition specified in the theory. In fact, it seems to have settled down 
with a heat transport about 70% of the maximum set by the theory. Two 
possible causes are (a)  that the requirement that the minimum temperature 
gradient is zero is insufficiently restrictive, and (b)  that the Fourier series 
used to describe the convection does not satisfy all the boundary conditions. 
In the central region at the higher Rayleigh numbers, there is a systematic 
tendency to lower gradients, which is a departure in the opposite direction. 
Some of this may be due to the presence of a large-scale circulation, but 
measurements of the closely analogous flow between concentric rotating 
cylinders show an extensive region of constant angular momentum, the 
quantity analogous to temperature in convection (Taylor 1935). Pai (1943) 

(3.9)). 
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finds that the gradient of angular momentum is reversed in two small regions 
adjacent to each cylinder, and explains this as a result of large-scale circula- 
tions which are part of the general flow. It  may well be that the large-scale 
circulation postulated to explain the form of the temperature profile at the 
largest Rayleigh number is typical of the flow as a whole, except in its 
position, which is determined by the presence of side walls. For the 
present, it may be concluded that the Malkus theory is in fair but not good 
agreement with experiment, which is a remarkable achievement for a theory 
of turbulence not containing any disposable constants. 

The experimental work described above was done in the Cavendish 
Laboratory by the first author (D. B. T.), who is pleased to acknowledge 
the sponsorship of the work by the Meteorological Office. The second 
author has contributed some additional analysis of the results. 
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